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Substitution of the above expressions into the differential equation d dfx (2x) +2 d];ix) + f(x)=0
yields
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+ Z (k+s+2)(k+s+1)ak+2xk+s +2z (k+s+l)ak+1xk+s + Z akxk“ =0.
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Thus the indicial equations are s(s—1)a, =0 and s[(s +1)a, +2a,] =0, whose solutions are
readily found to be

Case 1) 51=0, ap and a; arbitrary;
Case 2) s, =1, ay arbitrary, a; =—ay;
Case 3) s3=—1, a; arbitrary, ap=0.

The recursion relation is given by
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Case 1) 5,=0, a9 and a; arbitrary, and ay., = . Therefore,

k=0: a, =—a70—a1.
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into the recursion relation. The solution of the differential equation in this case will be

f(x)=x" {ao+a1x+i(—1)"—1[(”—1)a0+ a }xn}:ao{H_i(_l)n—l (n—l')X”
n=2 n=l1 :
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It thus appears that a, = (—1)"_] { }, a conjecture confirmed by substitution

} +a,x exp(—x).

The differential equation is seen to have two independent solutions, one in the form of
xexp(—x), the other in the form of the function that multiplies @o. The latter solution may be
further simplified as follows:

o0 3 (n _ 1) x}’l [e 0] " xn [e¢] el x}’l
1+ () 1 Y () DY ()T = exp(—x) + x exp(—x).
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Thus the independent solutions of the equation may as well be exp(—x) and xexp(—x).
_ 2a; B A
k+3 (k+2)(k+3)

Case 2) 55=1, qy arbitrary, a; =—ay, and ap,H = . Therefore,
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It thus appears that a, =(-1)"a,/n!, a conjecture confirmed by substitution into the
recursion relation. The solution of the differential equation in this case will be

f(x)=x" 2%%’ = a,x exp(—x).

Case 3) s3=—1, ap=0, a, arbitrary, and k(k +1)a, , =—2ka, , —a,.

k=0: a,=arbitrary.
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It thus appears that a, , = (-1)" [ ! —2}, a conjecture confirmed by substitution into
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the recursion relation. The solution of the differential equation in this case will be
+1

f(x)=x 3{a1x+a2x +Z;( 1)” Ln”fll)'jt%}x }—a1[1+2( 1" (nx 1)'}+a2xexp(—x).

Note that the second term is a solution already obtained in previous cases. If we set a,=—a;,
the above f(x) becomes the second independent solution, as follows:

n+l n+1
f(x)=a, - ax+2( 1)[ 4, ——'}c —al{l x+z( D }—alexp(—x).
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